Associate Professor of
Mathematics
Department of
Mathematics
Faculty of Natural Sciences
University of Puerto Rico at Río Piedras (UPRRP)
17 University Ave. Ste 1701
San Juan PR, 00925-2537
Office: NCN-II C-124
E-mail:
alejandro.velez2@upr.edu
Courses
Teaching
Present University (UPRM)
· L. F. Cáceres, O. Colón, J. Flores*, D. Gutiérrez*, F. Henao*, J. Jiménez*, S. López*, J. Ortega*, A. Portnoy, A. Vélez-Santiago, OMPR Olimpiadas Matemáticas de Puerto Rico 2021-2022, OMPR, UPRM, 2023.
· L. F. Cáceres, O. Colón, D. Gutiérrez*, F. Henao*, J. Jiménez*, S. López*, J. Ortega*, B. Morales*, A. Portnoy, A. Vélez-Santiago, OMPR Olimpiadas Matemáticas de Puerto Rico 2020-2021, OMPR, UPRM, 2022.
· L. F. Cáceres, O. Colón, D. Gutiérrez*, B. Morales*, A. Portnoy, A. Vélez-Santiago, OMPR Olimpiadas Matemáticas de Puerto Rico 2019-2020, OMPR, UPRM, 2021.
· L. F. Cáceres, O. Colón, B. Morales*, A. Portnoy, A. Vélez-Santiago, OMPR Olimpiadas Matemáticas de Puerto Rico 2018-2019, OMPR, UPRM, 2019.
· L. F. Cáceres, O. Colón, B. Morales*, A. Portnoy, P. A. Torres, A. Vélez-Santiago, OMPR Olimpiadas Matemáticas de Puerto Rico 2017-2018, Publicaciones AFAMaC, 2018.
· L. F. Cáceres, O. Colón, A. Portnoy, P. A. Torres, A. Vélez-Santiago, M. Zepeda, OMPR Olimpiadas Matemáticas de Puerto Rico 2016-2017, Publicaciones AFAMaC, 2017.
· K. Silva-Pérez*, A. Vélez-Santiago, Diffusion over ramified domains: solvability and fine regularity, Submitted.
· M. R. Lancia, A. Vélez-Santiago, A priori estimates for general elliptic and parabolic boundary value problems over irregular domains, Submitted.
· G. Ferrer*, A. Vélez-Santiago, 3D Koch-type crystals, J. Fractal Geometry 10 (2023), 109—149.
· C. Carvajal-Ariza*, J. Henríquez-Amador*, A. Vélez-Santiago, The generalized anisotropic dynamical Wentzell heat equation with nonstandard growth conditions, J. d'Analyse Mathématique (2023) [in press].
· V. Díaz-Martínez*, A. Vélez-Santiago, Generalized anisotropic elliptic Wentzell problems with nonstandard growth conditions, Nonlinear Analysis: Real World Applications 68 (2022), 103689 (44 pages).
· M.-M. Boureanu, A. Vélez-Santiago, Applied higher-order elliptic problems with nonstandard growth structure, Applied Mathematics Letters 123 (2022), 107603 (7 pages).
· J. Henríquez-Amador*, A. Vélez-Santiago, Generalized anisotropic Neumann problems of Ambrosetti—Prodi type with nonstandard growth conditions, J. Mathematical Analysis and Applications 494 (2021), 124668 (38 pages).
· K. Ríos-Soto, C. Seda-Damiani**, A. Vélez-Santiago, The variable exponent Bernoulli differential equation, Involve, a Journal of Mathematics 12 (2019), 1279—1291.
· M. R. Lancia, A. Vélez-Santiago, P. Vernole, A quasi-linear nonlocal Venttsel' problem of Ambrosetti--Prodi type on fractal domains, Discrete & Continuous Dynamical Systems - Series A 39 (2019), 4487—4518.
· M.-M. Boureanu, A. Vélez-Santiago, Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponents, J. Differential Equations 266 (2019), 8164—8232.
· S. Creo, M. R. Lancia, A. Vélez-Santiago, P. Vernole, Approximation of a nonlinear fractal energy functional on varying Hilbert spaces, Communications on Pure and Applied Analysis 17 (2018), 647—669.
· A. Vélez-Santiago, A quasi-linear Neumann problem of Ambrosetti—Prodi type on extension domains, Nonlinear Analysis: Theory, Methods & Applications 160 (2017), 191—210.
· M. R. Lancia, A. Vélez-Santiago, P. Vernole, Quasi-linear Venttsel' problems with nonlocal boundary conditions on fractal domains, Nonlinear Analysis: Real World Applications 35 (2017), 265—291.
· A. Vélez-Santiago, Embedding and trace results for variable exponent Sobolev and Maz'ya spaces on non-smooth domains, Glasgow Mathematical J. 58 (2016), 471—489.
· A. Vélez-Santiago, Ambrosetti—Prodi-type problems for quasi-linear elliptic equations with nonlocal boundary conditions, Calculus of Variations and Partial Differential Equations 54 (2015), 3439—3469.
· A. Vélez-Santiago, Global regularity for a class of quasi-linear local and nonlocal elliptic equations on extension domains, J. Functional Analysis 269 (2015), 1—46.
· A. Vélez-Santiago, On the well-posedness of first order variable exponent Cauchy problems with Robin and Wentzell-Robin boundary conditions on arbitrary domains, J. Abstract Differential Equations and Applications 6 (2015), 1—20.
· A. Vélez-Santiago, Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions, J. Functional Analysis 266 (2014), 560—615.
· A. Vélez-Santiago, Solvability of linear local and nonlocal Robin problems over C(Ω), J. Mathematical Analysis and Applications 386 (2012), 677—698.
· A. Vélez-Santiago, Quasi-linear boundary value problems with generalized nonlocal boundary conditions, Nonlinear Analysis: Theory, Methods & Applications 74 (2011), 4601—4621.
·
A. Vélez-Santiago, M. Warma, A class of
quasi-linear parabolic and elliptic equations with nonlocal Robin
boundary conditions,